Impairment of Autophagic Flux Promotes Glucose Reperfusion-Induced Neuro2A Cell Death after Glucose Deprivation

نویسندگان

  • Bong Geom Jang
  • Bo Young Choi
  • Jin Hee Kim
  • Min-Ju Kim
  • Min Sohn
  • Sang Won Suh
چکیده

Hypoglycemia-induced brain injury is a common and serious complication of intensive insulin therapy experienced by Type 1 diabetic patients. We previously reported that hypoglycemic neuronal death is triggered by glucose reperfusion after hypoglycemia rather than as a simple result of glucose deprivation. However, the precise mechanism of neuronal death initiated by glucose reperfusion is still unclear. Autophagy is a self-degradation process that acts through a lysosome-mediated trafficking pathway to degrade and recycle intracellular components, thereby regulating metabolism and energy production. Recent studies suggest that autophagic and lysosomal dysfunction leads to abnormal protein degradation and deposition that may contribute to neuronal death. Here, we focused on the relationship between autophagy and lysosomal dysfunction in hypoglycemia-induced neuronal death. In neuronal cells, glucose reperfusion after glucose deprivation resulted in inhibition of autophagy, which may promote cell death. This cell death was accompanied with activation of caspase3 and the lysosomal proteases cathepsin B and D, which indicated impairment of autophagic flux. Taken together, these results suggest that interplay of autophagy, caspase3 activation and lysosomal proteases serve as a basis for neuronal death after hypoglycemia. Thus, we provide the molecular mechanism of neuronal death by glucose reperfusion and suggest some clues for therapeutic strategies to prevent hypoglycemia-induced neuronal death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroprotective effect of Nigella sativa hydro alcoholic extract on serum/glucose deprivation induced PC12 cells death

Introduction: The Serum/Glucose deprivation -induced cell death in cultured PC12 cells represents a useful in vitro model for the study of brain ischemia and neurodegenerative disorders. Nigella sativa L. has been known as a source of antioxidants. To elucidate the neuroprotective actions of N. sativa extract in vitro, we studied the effect of N. sativa extract on cultured PC12 cells under s...

متن کامل

Kalirin-7 plays the neuroprotective role in Neuro-2A cells injured by oxygen-glucose deprivation and reperfusion through Rac1 activation

Objective(s): The study explored the neuroprotective role of Kalirin-7 (Kal-7) in Neuro-2A cells after oxygen-glucose deprivation and reperfusion (OGD/R) treatment.Materials and Methods: The study used an OGD/R model of mouse Neuro-2A neuroblastoma cells in vitro. Cells were transfected with pCAGGS-Kal-7 to up-regulating kal-7. Then cell proliferation and apoptosis were respectively analyzed by...

متن کامل

MUC1 oncoprotein promotes autophagy in a survival response to glucose deprivation.

Tumor cells survive under conditions of nutrient deprivation by mechanisms that are not fully understood. The MUC1 oncoprotein is aberrantly overexpressed by most human carcinomas and blocks oxidative stress-induced death. The present studies show that MUC1 inhibits the induction of necrosis in response to the deprivation of glucose. MUC1 suppressed glucose deprivation-induced increases in reac...

متن کامل

Repeated Glucose Deprivation/Reperfusion Induced PC-12 Cell Death through the Involvement of FOXO Transcription Factor

BACKGROUND Cognitive impairment and brain damage in diabetes is suggested to be associated with hypoglycemia. The mechanisms of hypoglycemia-induced neural death and apoptosis are not clear and reperfusion injury may be involved. Recent studies show that glucose deprivation/reperfusion induced more neuronal cell death than glucose deprivation itself. The forkhead box O (FOXO) transcription fact...

متن کامل

Pioglitazone alleviates oxygen and glucose deprivation-induced injury by up-regulation of miR-454 in H9c2 cells

Objective(s): Pioglitazone, an anti-diabetic agent, has been widely used to treat type II diabetes. However, the effect of pioglitazone on myocardial ischemia reperfusion injury (MIRI) is still unclear. Herein, the objective of this study is to learn about the regulation and mechanism of pioglitazone effects on oxygen glucose deprivation (OGD)-induced myocardial cell injury.Materials and Method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013